Advanced Beam Instrumentation supporting AARD at the A0-Photoinjector

Manfred Wendt Fermilab

Agenda

- Motivation
- Overview on long. beam diagnostics
- OTR Introduction
- Ongoing Activities
 - Streak Camera
 - Martin-PuplettInterferometer
 - OTR Interferometer
 - EOM-basedTime-of-Arrival

Proposed New Activities

- Long. diagnostics using CTR
- Long. bunch profile using EOS
- HOM signal processing
- Beam tests of a cold ILC cavity BPM prototype
- Waveguide pickups

Motivation

- Need a set of reliable basic beam instruments (upgrades required, see also Ray's talk):
 - Intensity, position (orbit), transverse beam size (emittance)
- AARD demands advanced beam diagnostics, in particular in the longitudinal domain to study and observe the bunch dynamics in AARD experiments:
 - Bunch length
 - Longitudinal bunch profile
 - Bunch time-of-arrival (wrt. RF phase, or relative between two locations)
- No best "I can do everything" instrument available to fully characterize longitudinal bunch parameters
 - Calibration, measurement range (fs, ps) and time (single/multi shot), (non) invasive, resolution, reproducibility, etc.

Longitudinal Beam Diagnostics

Device	Applicable bunch lengths	Comments
Streak camera Ongoing activity, Bunch profile	1 – >100 ps	 Well understood, expensive commercial device Single bunch, single pass capability (intensity limited) Dispersion effects dominate at short bunch length measurements Can provide arrival times and jitter
Martin-Puplett Interferometer Ongoing, length	< few ps	 Slow response, scanning using many macropulses Susceptible to upstream CSR and wakefields Missing phase information makes details of the bunch profile difficult to obtain
CTR angular distribution Proposed, length	< few ps	 Parametric measurement of the bunch profile, bunch shape must be assumed Scanning over many macropulses Susceptible to upstream CSR and wakefields
Electro-optical sampling Proposed, profile	100 fs – 2 ps	 Single shot capability, fairly expensive, needs a (high power) laser synchronized to the beam Must understand behavior of electro-optical crystal in the frequency regime corresponding to the expected bunch length Susceptible to upstream CSR and wakefields
Waveguide pickups Proposed, length	200 fs – 2 ps	 Inexpensive and simple, but calibration very difficult. Does not give shape information, just rough bunch length

(Optical) Transition Radiation

Transition radiation

$$\frac{d^{2}U}{d\omega d\Omega} \approx I(\omega, \theta) = \frac{e^{2}}{hc_{0}} \frac{1}{\pi^{2}\omega} \frac{\theta^{2}}{(\gamma^{-2} + \theta^{2})^{2}}$$

- Charged particles passes through a media boundary
- Monitoring of trans. beam profile (-> emittance), bunch length and energy

Streak Camera Principle

- Dual-sweep streak camera Hamamatsu C5680 (1.5 ps FWHM res.)
- Addition of M5676 synchroscan plugin module and the C6878 phase-locked delay box enabled new series of experiments at A0.

Streak Camera Summary

Streak camera

- Views UV-visible light from a (intercepting or non-intercepting)
 conversion mechanism, e.g. OTR, OSR to observe the bunch.
- Provides a 2-D bunch profile, allowing sliced measurements:
 - Vertical axis -> time axis
 - Horizontal axis: preserved (spatial, energy, spectral)

Features

- Synchroscan unit (81.25 MHz, phase-locked to master oscillator)
 - ~1 ps RMS jitter
 - Synchronous summing of micropulses (statistics, intensity)
- Delay unit provides long term stability
- Dual-sweep allows simultaneous observation of micropulses

Resolution

1.5 ps FWHM (monochromatic), larger for broadband light

Streak Camera Results

 Bunch length elongation with micropulse charge and slice beam-size effects (50%) at 4 nC observed.

Lumpkin, Ruan: BIW08

Steak Camera Results (cont.)

 Bunch compression and transit time changes for different momenta in double doglegs were measured.

The line is a fit showing that R_{56} is 0.18 m

Lumpkin, Ruan: BIW08

Streak Camera Results (cont.)

Emittance exchange results in bunch compression.

Martin-Puplett Interferometer

- Martin-Puplett interferometer
 - Needs many beam pulses to resolve the temporal convolution
 - Difficult to calibrate the detectors

MP Interferometer Results

Measurement experiment 2008:

- Using improved pyroelectric detector (DESY) with suppressed interference
- Measured spectrum does not show interferences
- Bunch length measurement results (deflecting mode cavity on/off), and comparison:
 - Autocorrelation with ratio = 0.69
 - Reconstructed bunch ratio = 0.43
 - Streak camera ratio = 0.66

MP issues

- Detector response (low freq.) and calibration
- Diffraction effects at lower wavelength

Emittance Exchange Cavity On

MP Interferometer: Next Steps

13

Martin-Puplett Interferometer (borrowed from DESY)

Plans

- Calibration of the pyroelectric detector frequency response
- Experiments with other detector types
 - Golay cell
 - Schottky detector
- Reproduction and improvements of the MP interferometer hardware (borrowed from DESY).

OTR Interferometer (OTRI)

- - **Beam divergence measurement**
 - Beam energy (better accuracy)
 - Single shot measurement (no scanning)

OTRI apparatus at the A0 Photoinjector.

OTRI Results

Measured (solid lines) and computed (dots) fringes for the Mylar (left) and Mica (right) - based interferometers at normal incidence, 16 MeV beam with the energy spread of 0.6% and the readout resolution of \approx 0.9 mrad.

Next steps

- Experiment with thinner foils
- Beam divergence measurements at higher beam energies
- Measurements in the EEX line?!

The interference pattern obtained at 45° incidence setup with Mylar (left) and Mica (right) -based interferometers at the beam energy of 16 MeV.

Results

- Measurements taken with
 2.5 μm Mylar and 6 μm Mica double foils
- Mylar foils show very good agreement with simulation!
- Beam divergence measurement accuracy ~ 15 %

15

Time-of-Arrival / Beam Phase

- To quantize long. beam dynamics a sub-ps resolution bunch-by-bunch time-of-arrival measurement is required!
- An electro-optical modulator (EOM) fed by femto-second fiber laser pulses utilizes the sampling of a high slew-rate pickup signal.
- The bunch time-of-arrival is referenced to the RF master oscillator.

TOF Preliminary Results

17

Initial results:

- EOM setup established
- First measurements taken
- Resolution limited by
 - Noise & jitter sources (EMI, 81.25 MHz master)
 - Pickup response
 - Long cable runs (> 50 ft)
 - Fiber laser PLL lock
- Resolution: ~3 ps (RMS)

Next Steps

- Identify and improve jitter source, improve system resolution (100-200 fs)
- Improved beam pickup
- New location with shorter cable runs (in the cave?!)

Long. Diagnostics using CTR

- Large target D >> $\gamma\lambda$ and far field L >> $\gamma^2\lambda$
 - Angular distribution does not depend on frequency
 - Measurement using OTR (visible)
- Small target D < γλ and/or near field L < γ²λ
 - Angular distribution depends on frequency
 - Measurement using coherent TR (CTR) (far-infrared)
- Transition region D ~ γλ
 - Angular distribution sensitive to bunch length
 - Tune D as function of γ and λ to be in this transition region
 - Map angular CTR distribution of measure the bunch length

Proposal from R. Fiorito and A Shkvarunets, *University of Maryland*

Coherent TR distribution backward for 16 MeV electrons at A0 for two bunch lengths

Results from PSI-SLS (100 MeV)

Energy distribution of CTR

Single Gaussian bunch fit

0.69ps, RMS=5%

Double Gaussian bunch fit, RMS=1.26%,

0.57ps, Am=1;

2.84ps, Am=0.2, Shift=1.53ps

Reference: paper WEPC21, DIPAC 07

Electro-Optical Sampling (EOS)

Three common single shot EO detection techniques to measure sub-ps bunch length

- All 3 single shot scheme are realized
- Temporal decoding resolve bunch length <100 fs using Ti:sapphire laser and GaP crystal at DESY
- At DESY, deflecting mode cavity proved the effectiveness of EO techniques
- Most current EO experiments are done on high energy electron beams
- Most current EO efforts are focused on electron bunch length less than 200 fs.

Comparison of EOS Techniques

	Spectral Decoding	Temporal Decoding	Spatial Decoding
Pros	Simple laser systemSingle shot measurementHigh repetition rate	Large time windowHigh resolution (110 fs)Single shot measurement	Simple laser systemSingle shot measrementHigh resolution (160 fs)High repetition rate
Cons	 Limited resolution (200 fs) Distorted signals for e⁻ bunches < 200 fs 	Complex laser system (mJ laser pulse energy)Low repetition rate	 Complex imaging optics Good for clocking, but tough to get the e-bunch information

 For the current A0 research requirements and laser availability we will focus on the spectral and spatial decoding techniques.

Proposed EOS Activities

1. Measure longitudinal bunch information of low energy electron beams

EO resolution
$$\Longrightarrow \frac{2R}{\gamma c}$$

Here R is the distance between crystal and electron bunch center

- What will happen when γ is low?
- Can we deconvolute the signal?

Current energy in A0 and upgraded A0 is a very good fit for this study

2. Investigate the use other laser wavelengths, via fiber lasers, for EO sampling at these bunch length.

	Ti:Sa Laser	Fiber laser
Cost	High	Low
Transport	Free space Complicated	Fiber Easier
EO study	Successfully Done	?

Recent simulations show that a fiber laser based EOS is feasible!

HOM Signals for Beam Monitoring

HOM as BPM

- TE₁₁₁₋₆ narrow band readout
- Beam-based calibration data, to orthogonalize the polarization planes of the excited eigenmodes per SVD algorithm.

HOM as phase monitor

- Comparison of the leaking
 1.3 GHz fundamental
 (TM₀₁₀) to the first
 monopole HOM (TM₀₁₁)
- Broadband Scope analysis
- <0.1° @ 1.3 GHz resolution (equiv. ~200 fs RMS)

HOM Development & Analysis Plans

Develop read-out hard- and firmware for HOM Analysis

- Narrowband System:
 - Low-noise, high-IP3 downmix hardware based on SLAC/KEK/DESY **ILC** collaboration experience
 - Try to to incorporate flexibility, tunable to downmix different dipole and possibly monopole bands
 - Low cost per channel custom VME digitizers, capable of processing the HOM signals using the onboard FPGA
- Broadband system: High-speed oscilloscope

HOM Analysis

- The above instrumentation can be used to provide beam position, trajectory, and phase measurements to optimize performance.
- Because the HOM spectrum is a function of the cavity shape, the observed modes provide a powerful cavity diagnostic for study and simulation.

Other Activities

Cold L-Band cavity BPM

- ILC collaboration activity
- Beam test of a prototype
- Verify tuning, signal orthogonality and levels, resolution, reproducibility
- Waveguide Pickups
 - Horn antenna, waveguide & diode detector assembly
 - Available frequency range: 90-900 GHz
 - Simple setup for relative bunch length estimation (SLAC ESA, CERN CLIC)

Summary

- Advanced beam instruments play a mission critical role to characterize the beam parameters when performing current and future A0-Photoinjector AARD experiments.
- A comprehensive, challenging A0 instrumentation plan is proposed, it has some focus in the longitudinal domain:
 - Utilizing advanced optical, electro-optical and microwave state-of-the-art technologies.
 - Continuing ongoing developments, i.e. streak camera,
 MP interferometer, OTRI, and time-of-arrival diagnostics.
 - Start of new activities, i.e. CTR, EOS, HOM, cavity BPM, and waveguide pickup instrumentation.
- Local and international collaborations are established, and are crucial for the success of the program!